Автотрансформатор описание. Особенности автотрансформаторов и их использование

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

У стройство автотрансформатора

В общем случае любые трансформаторы применяются в электрических сетях для изменения величины напряжения. Так при передаче электроэнергии на большие расстояния повышение напряжения снижает потери энергии на активном сопротивлении передачи пропорционально квадрату значения рабочего напряжения.

Поэтому напряжение генератора электростанции повышают в 10 -- 15 раз передают по ЛЭП, а потом на месте снижают последовательно по ступеням для питания местных распределительных сетей различных напряжений. Все подобные преобразования напряжения из одного значения в другое осуществляют при помощи трансформаторов и их разновидностью -- автотрансформаторов .

Главное отличие автотрансформатора от обычного трансформатора состоит в том, что две его обмотки обязательно имеют между собой электрическую связь, они наматываются на одном стержне, мощность передается между обмотками комбинированным способом -- путем электромагнитной индукции и электрического соединения.

Это снижает габариты и стоимость машины (причины и расчет этого факта приведены ниже).

Автотрансформатор может быть сделан двухобмоточным и многообмоточным, в каждой из этих модификаций автотрансформаторов обязательно присутствуют обмотки ВН (высшего напряжения -- вход ) и СН (среднего напряжения -- выход ), электрически соединенные между собой. В многообмоточных моделях имеется еще одна или несколько обмоток НН (низкого напряжения ), которая имеет с первыми двумя только индуктивную электромагнитную связь.

В трехфазном автотрансформаторе обмотки ВН и СН соединяются в звезду с глухозаземленной нейтралью U 0 (точка 0 на рис. 1), а обмотки НН обязательно соединены в треугольник N.

По рисунку 1 видно, что обмотка ВН включает в себя общую обмотку ОА m , которая, собственно, и составляет обмотку СН, и последовательной обмотки А m А.

Рис. 1. Обмотки автотрансформатора: 1-- трехфазного; 2-- однофазного

Распределение токов, в работающем автотрансформаторе в режиме номинальной нагрузки, между обмотками неодинаково.

В последовательной обмотке А m А проходит ток нагрузки ВН -- I А. По закону электромагнитной индукции в сердечнике автотрансформатора создается магнитный поток, который индуктирует в обмотке СН ток I Am .

Таким образом, ток общей обмотки СН образован суммой токов последовательной обмотки I А с электрической связью (ВН и СН), и тока I Am , по магнитной связи этих же обмоток --

I СН =I А +I Am .

Значение мощности на выходе автотрансформатора равно мощности на его входе. При отсутствии обмотки НН, мощность ВН равна мощности СН, это и есть номинальная мощность S ном автотрансформатора по электрической связи. Она равна произведению номинального напряжения обмотки ВН U ВН, на номинальный ток I ВН последовательной обмотки.

Рассчитывают еще и типовую мощность автотрансформатора называют, которая составляет часть номинальной мощности, передаваемой электромагнитным путем.

S т =S ном* а в ,

где а в =1-U СН /U ВН -- коэффициент выгодности автотрансформатора.

Он определяет долю типовой мощности в составе номинальной, чем она меньше, тем меньше габариты и сечения сердечника (магнитопровода) и обмоток автотрансформатора, которые рассчитываются исходя не из полной номинальной, а только из её части -- типовой мощности. Поэтому изготовление автотрансформаторов значительно дешевле, чем обычных трансформаторов такой же мощности.

Мощность на общей обмотке является одним из главных параметров, которые нужно контролировать при работе автотрансформатора, превышение её в длительном режиме недопустимо.

На рисунке 1 показаны варианты подключения амперметра для измерения нагрузки на общей обмотке при трехфазном и однофазном варианте автотрансформатора.

Чем меньше коэффициент трансформации (чем ближе значения U СН и U ВН), тем выгоднее использование автотрансформаторов и дешевле их изготовление.

Еще одним большим достоинством автотрансформаторов можно назвать возможность регулирования напряжения под нагрузкой без прерывания питания потребителей.

Для большинства автотрансформаторов используется способ переключения ответвлений регулировочной обмотки. Эти регулировочные ответвления берутся от менее нагруженной обмотки ВН, особые устройства -- переключатели ответвлений изменяют число включенных в работу витков, тем самым увеличивая или уменьшая коэффициент трансформации и напряжение выхода.

Такое регулирование возможно в ручном и автоматическом режимах (при помощи следящих систем с обратной связью, это делает автотрансформатор стабилизатором напряжения). Требования к качеству выходного напряжения для питания потребителей обуславливают применение и важность таких устрйств.

электроэнергия автотрансформатор магнитный

На рисунке 2 показаны схемы регулирования напряжения выхода А mна автотрансформаторе на стороне ВН (1) и на стороне СН (2). Таковы устройство и принципы работы автотрансформаторов.

Размещено на Allbest.ru

...

Подобные документы

    Трансформатор - электромагнитное устройство для передачи посредством магнитного поля электрической энергии. Зависимость напряжения от нагрузки. Устройство автотрансформатора, трансформаторы для измерения тока и напряжения. Заземление вторичных обмоток.

    презентация , добавлен 14.12.2011

    Решение проблемы централизованного производства электроэнергии и ее передачи на большие расстояния. История изобретения, устройство и классификация трансформаторов как электромагных устройств для преобразования переменного тока посредством индукции.

    реферат , добавлен 23.01.2011

    Устройство, назначение и принцип действия трансформаторов. Расчет электрических величин трансформатора и автотрансформатора. Определение основных размеров, расчет обмоток НН и ВН, параметров и напряжения короткого замыкания. Расчет системы охлаждения.

    реферат , добавлен 10.09.2012

    Выбор устройства релейной защиты и автоматики автотрансформатора. Расчет уставок основных и резервных защит. Дистанционная защита автотрансформатора. Выбор уставок дифференциального органа с торможением. Расчет параметров схемы замещения исследуемой сети.

    курсовая работа , добавлен 21.03.2013

    Характеристика и технические параметры тиристора, его разновидности, принцип работы, условное обозначение и применение. Устройство автотрансформатора, принцип его работы. Обслуживание и ремонт электрических двигателей. Чертежи жгутов, кабелей и проводов.

    шпаргалка , добавлен 20.01.2010

    Опыты холостого хода и короткого замыкания трансформатора и их значение. Сущность напряжения короткого замыкания. Средства улучшения коммутации в машинах постоянного тока. Устройство и принцип действия автотрансформатора, его достоинства и недостатки.

    контрольная работа , добавлен 09.10.2010

    Опис встановленого обладнання та розрахунок струмів короткого замикання підстанції "Київська".Основні пошкодження автотрансформатора. Вимоги до релейного захисту. Характерні пошкодження, що можуть виникнути в процесі експлуатації та причини їх виникнення.

    дипломная работа , добавлен 13.02.2016

    Номенклатура силовых трансформаторов. Устройство и принцип действия трансформаторов. Конструкции линий электропередач и их составляющие. Виды и применение счетчиков электроэнергии. Действие электрического тока на организм человека, оказание первой помощи.

    отчет по практике , добавлен 20.11.2013

    Выбор рода тока и напряжения двигателя, его номинальной скорости и конструктивного исполнения. Расчёт мощности и выбор электродвигателя для длительного режима работы. Устройство и принцип действия двигателя постоянного тока. Выбор двигателя по мощности.

    курсовая работа , добавлен 01.03.2009

    Функционирование асинхронных машин в режиме генератора. Устройство асинхронных двигателей и их основные характеристики. Получение вращающегося магнитного потока. Создание вращающего момента. Частота вращения магнитного потока статора и скольжения.

Существуют ситуации, при которых необходимо изменять напряжение в относительно небольших пределах. Легче всего осуществить это при помощи однообмоточных трансформаторов, которые также еще называют автотрансформаторами. В том случае, если коэффициент трансформации не сильно отличается от единицы, то разница между токами в первичной и вторичной обмотках будет небольшой. Если объединить обе эти обмотки получится схема самого обычного автотрансформатора. Эти трансформаторы относят к группе устройств специального назначения.

Главное отличие автотрансформаторов от обычных трансформаторов представляет собой тот факт, что у них обмотка самого низкого напряжения является неотъемлемой частью обмотки самого высокого напряжения. Иными словами, цепи у этих обмоток имеют, помимо магнитной, еще и гальваническую связь. Для того чтобы получить повышение или понижения напряжения необходимо соответствующим образом включить обмотки автотрансформатора. Целесообразней всего использовать их в тех случаях, когда требуется незначительное изменение напряжения. Тогда часть обмотки, соединяющая обе цепи, может быть выполнена из тонкого провода, что позволяет сэкономить металл и, разумеется, средства.

Принцип действия автотрансформаторов

Также при помощи автотрансформатора можно значительно сэкономить на стали, которая используется для изготовления магнит провода. Если учесть тот факт, что этот участок является довольно протяженным, то экономия получается существенной. В других электромагнитных преобразователях передача энергии происходит через магнитное поле между двумя обмотками. В автотрансформаторах она осуществляется как через магнитное поле, так и через непосредственную электрическую связь.

Подобное устройства уже успели показать себя исключительно с хорошей стороны. Автотрансформаторы отлично конкурируют с традиционными двухобмоточными трансформаторами. Но только тогда, когда их коэффициент трансформации не сильно отличается от единицы. По большому счету, автотрансформаторы в плане конструкции мало чем отличаются от трансформаторов. В них так же имеются стержни магнитопровода, на которых устанавливаются две обмотки, от которых берутся выводы. Большинство деталей, используемых в автотрансформаторах, применяются и в двухобмоточных трансформаторах.

Автотрансформатор представляет собой трансформатор, у которого обмотка низкого напряжения является частью об­мотки высокого напряжения (рис. 7.6).

У однофазного автотрансформатора всего одна обмотка. В режиме холостого хода автотрансформатор ничем не отли­чается от обычного трансформатора. В режиме нагрузки по общей части витков протекает ток, который равен разности токов ( i 1 - i 2 ), так как вторичный ток ослабляет магнитный поток в сердечнике (т. е. соответствующий магнитный поток имеет знак, противоположный знаку потока, создаваемого током первичной обмотки).

Чаще всего автотрансформаторы изготавливают со сколь­зящим контактом, что позволяет плавно регулировать вы­ходное напряжение в широких пределах. Примером мо­жет служить лабораторный автотрансформатор (ЛАТР) (рис. 7.7, а).

Обмотка этого трансформатора выполнена проводом круг­лого сечения на тороидальном стальном сердечнике. На одной торцевой стороне изоляцию снимают вместе с частью самого провода, но при этом витки остаются изолированны­ми друг от друга (рис. 7.7, б). По оголенной поверхности витков скользит небольшая щетка, подключая нагрузку к различному числу витков и изменяя тем самым выходное напряжение. Так как перемещающаяся щетка замыкает на­коротко сразу 1- 2 витка, то при хорошем контакте между ними эти витки могут сгореть. Чтобы этого не случилось, щетку делают из графита, сопротивление которого доста­точно велико для ослабления токов в короткозамкнутых витках.

Медный срез

.Изоляция (эмаль)

Если часть обмотки автотрансформатора сделать первич­ной, а всю обмотку вторичной, то автотрансформатор будет повышающим.

15. Трансформаторы тока и напряжения.

В технике больших токов и высоких напряжений измере­ния электрических величин производят только через изме­рительные трансформаторы -трансформаторы тока и трансформаторы напряжения, так как непосредственные измерения с помощью шунтов и добавочных резисторов весьма затруднительны. Так, наибольший ток, который еще можно измерить путем непосредственного включения прибора, со­ставляет 600 А, а напряжение - 2000 В. К тому же шунты и добавочные сопротивления получаются громоздкими и доро­гими, а прикосновение к таким приборам в сетях высокого напряжения опасно для жизни.

Трансформатор тока состоит из сердечника и двух обмо­ток - первичной и вторичной (рис. 7.8).

Первичную обмотку, которая содержит небольшое коли­чество витков, включают последовательно с нагрузкой, в цепи которой необходимо измерить ток, а к вторичной обмотке, с большим числом витков, подключают амперметр. Так как сопротивление амперметра мало, то можно считать, что транс­форматор тока работает в режиме короткого замыкания, при котором суммарный магнитный поток равен разности пото­ков, созданных первичной и вторичной обмотками.

Измеряемый ток, протекая по первичной обмотке с низ­ким сопротивлением, создает на ней весьма небольшое паде­ние напряжения, которое трансформируется во вторичную обмотку. Поскольку число витков вторичной обмотки значи­тельно больше, чем у первичной, то на ней получается значи­тельно большее напряжение при меньшем токе.

Трансформатор тока применяют не только для определе­ния силы тока, но и для включения токовых обмоток ват­тметров и некоторых других приборов. Выводы обмоток транс­форматора тока маркируют следующим образом: первичная обмотка - Л1 и Л 2 (линия), вторичная - И1 и И 2 (измери­тель). На рис. 7.8 также изображено схематическое обозна­чение трансформатора тока.

Один и тот же трансформатор тока можно использовать для одновременного включения нескольких измерительных приборов (рис. 7.9), однако желательно, чтобы их было не больше двух. Это объясняется тем, что по мере увеличения числа приборов их общее сопротивление возрастает, и режим работы трансформатора тока все более отходит от режима короткого замыкания (уменьшается ток вторичной обмотки).

Трансформатор тока не только расширяет пределы изме­рения приборов, но и гальванически отделяет вторичную цепь от первичной, изолируя тем самым прибор от высо­ких напряжений сети. Поэтому измерительные приборы монтируют обычным способом на распределительных щи­тах. При этом для безопасности один вывод вторичной об­мотки заземляют для того, чтобы при пробое изоляции между обмотками провод с высоким потенциалом оказался замк­нутым на землю. Трансформаторы тока изготавливают та­ким образом, чтобы номинальный ток вторичной обмотки составлял 5 А.

Вторичную обмотку работающего трансформатора тока нельзя размыкать и оставлять разомкнутой. Она всегда дол­жна быть замкнута на прибор или закорочена. Это следует делать потому, что при разомкнутой вторичной обмотке магнитный поток в сердечнике обусловлен лишь большим первичным током, а не разностью потоков первичного и вторичного токов. Этот большой магнитный поток создаст на вторичной обмотке высокое напряжение, опасное для жизни. Кроме того, большой магнитный поток может выз­вать перегрев сердечника.

Конструктивно трансформаторы тока выполняют по-раз­ному. Все они, как правило, имеют несколько коэффициен­тов трансформации. Наиболее удобный переносной транс­форматор тока - измерительные клещи (рис. 7.10).

Это трансформатор с разъемным сердечником, смонтиро­ванный в одном корпусе с амперметром. При нажатии на рукоятку сердечник размыкается и им обхватывается про­вод с измеряемым током. После отпускания рукоятки спе­циальная пружина плотно замыкает сердечник, и амперметр показывает силу тока в проводе. В данном случае провод с измеряемым током выступает в роли первичной обмотки. Измерительные клещи очень удобны, так как позволяют из­мерять ток в любом месте линии без разрыва провода, хотя точность таких измерений невысока.

Трансформатор напряжения состоит из сердечника и двух обмоток - первичной и вторичной (рис. 7.11).

Первичная обмотка содержит значительно больше витков, чем вторичная. На первичную обмотку подается измеряемое напряжение U1, а к вторичной обмотке подсоединяется вольт­метр. Поскольку сопротивление вольтметра велико, то по вто­ричной обмотке течет небольшой ток, и можно считать, что трансформатор напряжения работает в режиме холостого хода, т. е. изменения вторичного напряжения пропорциональны изменениям первичного при постоянном коэффициенте транс­формации. Фаза вторичного напряжения противоположна фазе первичного. Выводы трансформатора напряжения обознача­ют следующим образом: выводы первичной обмотки - А, X, выводы вторичной - а, x . Все трансформаторы напряжения

изготавливают таким образом, чтобы номинальное напряже­ние вторичной обмотки было равно 100 В.

В целях безопасности обслуживающего персонала один зажим вторичной обмотки и стальной кожух трансформато­ра напряжения обязательно заземляют для того, чтобы при пробое изоляции между обмотками провод с высоким потен­циалом оказался замкнутым на землю. Конструктивно транс­форматоры напряжения очень похожи на маломощные си­ловые трансформаторы.

Трансформаторы являются довольно разнообразной группой оборудования, имеющей существенные внутренние различия по назначению и конструктивным особенностям. Кроме того, работа различного оборудования требует различного напряжения. Существуют средние значения. Которые учитываются при составлении технического допуска на подключение. Например, домашние бытовые приборы рассчитаны на 220, а то и на 110 В. А вот оборудование промышленного типа использует 380 В. Для них предусмотрены свои варианты, более легкие и недорогие. Но прежде чем решиться на использование, следует знать в чем разница между трансформатором и автотрансформатором.

Для чего снижают напряжение?

Передача электроэнергии на дальние расстояния требует высоких показателей напряжения, в противном случае потери при транспортировке энергии сделают процесс нерентабельным. Но, чтобы использовать электроэнергию в промышленных и, тем более, бытовых целях, требуется ее снижение. Делается это постепенно, благодаря системе трансформаторов, а также их более мобильных аналогов — автотрансформаторов.

Несмотря на то, что все приборы такого типа призваны преобразовать исходное напряжение до желаемого, трансформаторы можно разделить на два типа. Первые — повышающие — увеличивают напряжение, поддерживая его на достаточном уровне для продолжения транспортировки или для использования в промышленных целях. Вторые — понижающие — напротив, снижают напряжение, позволяя использовать энергию в бытовых целях.

Что представляют собой оба устройства?

Любой трансформатор — это прибор статического типа, который преобразует переменный ток, частоту, а также число фаз. Это устройство включает в себя две или больше обмоток, которые наматываются на один для всех сердечник из стали. Одна из обмоток обязательно должна быть подключена к источнику переменного тока. Остальные могут быть соединены с конечными потребителями. В результате между ними наблюдается как электромагнитная, так и электрическая связи. Дополнительно обмотка автотрансформатора оснащена тремя и более выводами, то есть имеется возможность подключаться к разным выводам и, соответственно, получать разные значения напряжения.

В основе принципа работы лежит небезызвестная электромагнитная индукция. Проще говоря, меняющийся при прохождении через обмотку магнитный поток образует в ней электродвижущую силу.

Такой тип трансформаторов прекрасно подходит для смены напряжения в сравнительно малом диапазоне.

В чем отличия трансформатора от автоварианта?

Разница между трансформатором и автотрансформатором — это число обмоток. Больше - у трансформаторов, автотрансформаторы имеют всего один экземпляр.

Очевидные плюсы автовариантов обнаруживаются при применении в сетях с уровнем напряжения от 150 кВ и более. Эти приборы дешевле, да и потери в обмотках у них на порядок меньше. Размером автотрансформаторы тоже уступают своим статичным аналогам.

Помимо этого, у автотрансформаторов гораздо выше коэффициент полезного действия. Такое возможно благодаря частичному преобразованию мощности. Стоимостные преимущества же обосновываются меньшим расходом материалов, а соответственно, меньшей массой и большей компактностью.

Автотрансформатор является одним из вариантов трансформатора, имеющего первичную и вторичную обмотки, подсоединенные напрямую.

Благодаря такой особенности устройство обладает не только магнитной, но и электрической связью.

Устройство и принцип действия автотрансформаторов рассмотрим в статье.

Что такое автотрансформатор?

С общей точки зрения трансформаторы - приборы, предназначенные для преобразования показателей тока входного типа с одного напряжения на выходные токи другого напряжения. Если необходимо произвести замену уровня напряжения в незначительных пределах, то самым оптимальным вариантом станет применение однообмоточного прибора, также известного под названием автотрансформатор.

При коэффициенте трансформации на уровне единицы осуществляется полное поступление энергии непосредственно к заключительному потребителю.

Регулирование обеспечивается секционированной обмоткой внутри автотрансформатора, а сам прибор характеризуется удобством и ремонтопригодностью.

Автотрансформаторы обладают достаточно простой и интуитивно понятной конструкцией, что совершенно не умаляет достоинств такого прибора, но несколько ограничивает сферу применения.

Отличие автотрансформатора от трансформатора

Классические трансформаторы обладают не связанными друг с другом первичными и вторичными обмотками, поэтому процесс передачи энергии в таких устройствах обусловлен наличием магнитного поля.

На объединенной обмотке автотрансформатора располагается три вывода или более, при подключении к которым есть возможность получить различные показатели уровня напряжения.

В условиях малых коэффициентов трансформации, в пределах одной-двух единиц, любые автотрансформаторы показывают более высокую эффективность по сравнению с трансформаторными устройствами. Кроме всего прочего, такие приборы более легкие по весу и доступнее по стоимости, чем традиционные трансформаторы многообмоточного типа.

Устройство автотрансформатора

Однако, сравнивая основные характеристики автотрансформатора и классического трансформатора, можно смело утверждать, что второй вариант является максимально универсальным, а также отличается более широким диапазоном работы в процессе эксплуатации.

Автотрансформаторы характеризуются фактическим наличием одной обмотки с отходящими выводами, что обеспечивает высокоэффективную электромагнитную и электрическую связь.

Преимущества и недостатки

Основные преимущества автотрансформаторов закономерно снижаются в условиях повышения трансформирующего коэффициента, и именно по этой причине агрегаты такого типа недопустимо использовать при питании распределительной электрической сети 220 В от напряжения шесть тысяч Вольт.

Таким образом, достоинства автотрансформатора максимально проявляются при наименьшем коэффициенте трансформации, и в этом случае бывают представлены:

  • незначительным расходом стали для изготовления сердечника;
  • пониженным расходом меди для производства обмоток;
  • простотой и незначительными габаритами конструкции;
  • почти максимальным коэффициентом полезного действия, достигающим показателей 99 %;
  • меньшими потерями на обмотках и стальных магнитных проводах;
  • частичной передачей энергии с использованием электрических связей;
  • достаточной полезной мощностью;
  • наименьшими изменениями напряжения в условиях смены нагрузки;
  • доступной для рядового потребителя стоимостью.

При наличии высшего и низшего напряжения в условиях одного порядка отсутствуют препятствия для электрического соединения цепей.

Основные недостатки автотрансформатора заключаются в малом сопротивлении короткого замыкания, объясняющим высокую токовую кратность и возможность передачи высшего напряжения в сеть с низкими показателями, что обусловлено наличием электрической связи. Низковольтная схема внутри устройства напрямую зависит от наличия в сети достаточно высокого уровня напряжения, поэтому для предотвращения сбоев разрабатываются специальные схемы.

Лабораторный автотрансформатор

Кроме всего прочего, небольшое рассеивание, возникающее между обмотками, может спровоцировать короткое замыкание. Важно помнить, что соединение между обмотками в обязательном порядке должно быть максимально равномерным, а нейтраль обладает исключительно двумя блоками.

Следует отметить, что из-за конструктивных особенностей автотрансформатора достаточно проблематично сохранять целостность электромагнитного баланса, а балансировка потребует увеличения габаритов, что негативно сказывается на весе и стоимости прибора.

Устройство автотрансформатора

Для электромагнитного устройства статического типа характерно наличие одной обмотки, часть которой одновременно отвечает как за первичную, так и за вторичную сеть. Таким образом, в автотрансформаторе существует не только магнитная, но и электрическая связь, которая возникает между обмотками первичного и вторичного вида. В настоящее время прибор выпускается в виде одно- и трехфазного, а также двух- или трехобмоточного устройства.

Двухобмоточный трансформатор и автотрансформатор

Автотрансформаторы имеют определенный тип конструкции и некоторые особенности, представленные первой обмоткой, которая используется в качестве части второго контура агрегата или наоборот.

Поломку трансформатора можно определить при помощи мультиметра. – особенности прямого и косвенного методов проверки.

Схему подключения трансформатора с трех мест вы найдете .

С принципом действия трансформатора 220 на 12 вольт вы можете ознакомиться .

Принцип действия

Наиболее важные характеристики принципа действия стандартного автотрансформатора определены особенностью подключения обмоточной части.

В процессе подключения к катушке тока переменного типа внутри сердечника отмечается наличие магнитного потока.

Каждый виток на этом этапе эксплуатации прибора характеризуется индукцией электродвижущей силы с идентичной величиной.

Таким образом, принцип работы прибора объясняется стандартной схемой автотрансформатора, а в результате подсоединения нагрузки наблюдается перемещение вторичного электрического потока по обмотке. В это же время по проводнику осуществляется движение первичного тока. В результате величины двух потоков суммируются, поэтому на участок обмотки осуществляется подача незначительных по величине показателей электрического тока.

Как показывает практика эксплуатации автотрансформаторов, по некоторым основным параметрам принцип работы такого прибора имеет не слишком существенные отличия от традиционных трансформаторов двухобмоточного типа.

В настоящее время наряду с однофазными приборами находят достаточно широкое применение и устройства трехфазного типа, отличающиеся обмоткой. Существуют современные трёхфазные автотрансформаторы, имеющие два и три контура.

Основные защитные характеристики автотрансформатора представлены несколькими вариантами:

  • дифференциальная разновидность, предупреждающая выход из строя при любых нарушениях в обмотке;
  • принцип токовой отсечки, корректирующий неполадки, возникшие на ошинковках или вводах;
  • высокоэффективная токовая защита, которая четко срабатывает в условиях повреждения агрегата;
  • газовый вид, оповещающий даже о выделениях или понижении количества маслянистой жидкости.

Конструкцией предусмотрена защита при появлении замыкания или перегрузки, но прибор не подлежит эксплуатации, если замечено повреждение изолирующего слоя, отмечается сбой на соединительных участках, присутствуют сторонние звуки или слишком сильная вибрация, а также прибор имеет на корпусе выраженные трещины или многочисленные сколы.

Видео на тему